
Applications Services

Design Review

18 June 97

Version 1.2

Applications Services 2 07/15/97 7:17 AM

1. Application Services

1.1 Application Services Introduction

Application Services (CM symbol ASV) is a collection of Object Oriented classes that encapsulate
APIs providing an interface between User or Systems Applications and Systems Services. This
protects applications from any changes in the underlying Systems Services interface, as well as
protecting system services from changes in user application tools. Subsequent adaptations to System
Services can thus be accommodated through Application Services without altering the applications
themselves.

1.1.1 Application Services Overview1

Application Services CSCs are:
• (Redstone) FD Services
• (Redstone) Constraint Management Services
• (Redstone) Inter-Application Communication Study.
• (Redstone) User Display Services
• (post-Redstone) Data Path Services
• (post-Redstone) Data Fusion Services
• (post-Redstone) Math Model Services
• (post-Redstone) End Item Manager Services
• (post-Redstone) Prerequisite Control Services
• (post-Redstone) Reactive Control Services
• (post-Redstone) Test Application Script (TAS) Services
• (post-Redstone) User Advisory Services
• (post-Redstone) System Application Services

1 Changes in this section were made to reflect version 1.7 of the CSCI breakdown, which can be
found in the SEI area on CLCS1.

Applications Services 3 07/15/97 7:17 AM

1.1.2 Application Services Operational Description

Application Services provides applications with an object-oriented interface to underlying services.
Application Services implements a C++ layer that provides data type checking similar to the
GOAL language.

1.2 Application Services Specifications

1.2.1 Application Services Ground-rules

1. All Application Services will provide C++ APIs, using the approach agreed to with User
Applications on 6/4/97.

2. Application Services will be implemented in C++ using single inheritance and minimal
reference (pointer) usage to support possible future transitions to languages such as Java.

21.2.2 Applications Services Common Functional Requirements

This section defines requirements common to all Application Services APIs.
1. Application Services shall return status to the calling application on the success or failure of

every API call made to an Application Service.
2. When an Application Services API call fails, the Application Service shall send an error

message to the System Message Writer specifying the reason 3for any failure condition.

2 This statement assumed that a CORBA based interface would be chosen. Since the IAC study
has not yet been done, it is not appropriate to have this ground rule now.
3 We are planning on using exceptions instead of error codes.

Applications

EIM
Svcs

TAS
Svcs

CM
Svcs

UD
Svcs

FD
Svcs

IAC

Applications call objects
for range/type checking.

Application Services

Msg
Writer

Timer
Svcs

Log
Svcs

Print
Svcs

System Services

Direct calls to
svcs without
range/type
checking
requirements.

EIMs TASs
SL

Displays
DD DH DF

System ApplicationsUser Applications

NRS +
AM/CLM

OO / C++

Doesn’t matterInterface Layer

CMD

Platform TCP/IP
UDP

OS
 X /
Motif

HARDWARE

Event
Svcs

System
Viewers

Applications Services 4 07/15/97 7:17 AM

1.2.3 Application Services Performance Requirements

Redstone performance requirements are listed separately for each CSC.

1.2.4 Application Services Interfaces Data Flow Diagrams

Application
Services

User Applications

EIM

Command

NRS
AM/CLM

OLDB

System
Messaging

Data
Distribution

CVT

NRS Request (ACC)

NRS Response

FD Parm. Response

FD Parm. Request

Service Failure
Message (IAC)

FD Request (FD Svcs)

FD Response

User Dsplys

SL-GMS

Display
Object
Response

Display Object
Request (UDS)

Request

Response

Command Xfer
Request

Command Xfer
Response (IAC) Constraint Management

Constraint
Registration
and Violation
Events

Command
Support

Command Responses
Command Requests

2. Function Designator (FD) Services

2.1 FD Services Introduction

2.1.1 FD Services Overview

“This service provides Function Designator (FD) measurement and stimulus data.” FD Services
shall perform the following Redstone services:
• Provide APIs allowing applications to access 4processed value FDs.
• Provide APIs allowing applications to access queued multi-sample FDs.
• Provide APIs allowing applications to write FDs.

Function Designator (FD) Services provides applications a set of type-safe common access
methods for reading and writing FD data values. These data values are stored in the OLDB, the
Current Value Table (CVT), and the algorithm tables (per C. King, 5/17/97).

4 Counts are not contained in the Current Value Table. Having access to counts may be an issue
for a later delivery.

Applications Services 5 07/15/97 7:17 AM

Applications

FD
Svcs

Application Services

EIMs
SL

Displays
DD CVT

System ApplicationsUser Applications

System
Viewers

CMD

OLDB

2.1.2 FD Services Operational Description

FD Services provides a thin layer between applications and systems software. This thin layer
ensures that changes made to underlying systems layers do not cause impacts across the range
of user applications, and that changes in user applications tools do not cause impacts to systems
services. FD Services provides a C++ implementation of the types and type checking available in
GOAL.

2.2 FD Services Specifications

2.2.1 FD Services Ground-rules

Ground-rules for the Redstone delivery follow:
• FD Services performs all FD reads (including pseudo FDs) via Data Distribution.
• FD Services performs all FD writes via Command Support.
• The OLDB will be read-only.
• There will only be one OLDB per target CLCS “set”.
• FD Services will use the OLDB provided by System Build CSCI, targeted for 7/7/97

availability.
• FD Services makes no distinction between pseudo-FDs and real FDs.
• FD Services will provide for all FD accesses an atomic set of value, time and health.

52.2.2 FD Services Functional Requirements

The following paragraphs define the FD Services Redstone functional requirements:
• Read FDs
• Read Queued Multi-Sample FDs
• Write 6 FDs
Read FDs
1. FD Services shall provide an API to read the current data value for any valid FD.
2. FD Services shall provide an API to read the current value of an analog FD in engineering

units for the analog FD types defined in CLCS System Level Specification, 84K00200-000,
pre-release 1, dated 15 April 1997

3. FD Services shall provide an API to read the current value of a digital pattern FD.
4. FD Services shall provide an API to read the current value of a discrete FD for the following

engineering unit types:
a. Open / Close

5 No data fusion nor data health algorithm tables are being provided in Redstone. Two data
health bits will be provided, however they do not have associated algorithms.
6 There is no distinction between real and pseudo FDs in the non-command CLCS design. The
Command Processor understands that pseudo-FDs are associated with an artificial gateway.

Applications Services 6 07/15/97 7:17 AM

b. True / False
c. Wet / Dry
d. On / Off.

6. FD Services shall provide an API to read the current value of a discrete FD in raw format.
7. FD Services shall provide an API to read the time of the last change in value of the FD.
8. FD Services shall provide an API to read the health status of the last change of an FD.
9. FD Services shall provide the capability to access all current data attributes from the OLDB

for any valid FD.
10. FD Services shall provide an API to read an FDs current value, time of last value change, and

health status in a single request.
11. FD Services shall provide an API to read calibration data as FDs from the Gateways.
12. FD Services shall provide the capability to sequentially read all FD information from the

OLDB.
Read Queued Multi-Sample FDs
1. FD Services shall provide Queued multi-sample service to applications for any valid FD.
2. FD Services shall provide an API to identify that an FD should be delivered via queued service

(multi-sample registration and de-registration).
3. FD Services shall provide an API to access every change value in time sequential fashion.
4. FD Services shall provide an API to read the next value of a multi-sample FD.
5. FD Services shall provide an API to read the next N values of a multi-sample FD.
6. FD Services shall provide an API to clear all queued samples pending for the application.
7. FD Services shall provide an API to notify user applications when multi-sample queued data is

available for a relevant FD.
8. FD Services shall provide an API to start queued multi-sample delivery by FD.
9. FD Services shall provide an API to stop queued multi-sample delivery by FD.
Write FD
1. FD Services shall provide an API to write values to analog output FD’s.
2. FD Services shall provide an API to write a value to discrete output FD’s.
3. FD Services shall provide an API to write discrete output FD’s using the following discrete

data types: OPEN, CLOSE, TRUE, FALSE, WET, DRY, ON, OFF.
4. FD Services shall provide an API to write a value to digital pattern output FD’s.
5. FD Services shall provide an API to write a time value in a TBD time format.

2.2.3 FD Services Performance Requirements

• No specific performance requirements have been established for the FD Services Redstone
delivery.

• Applications Services personnel will perform an FD Services study to determine the following:
• CVT retrieval times (min, max, average) and quantities, by platform type
• OLDB retrieval times (min, max, average) and quantities, by platform type

Table Expected Accesses
CVT Multiple accesses per 10 ms
OLDB Multiple accesses per second

2.2.4 FD Services Interfaces Data Flow Diagrams

Applications Services 7 07/15/97 7:17 AM

2.3 FD Services Design Specification

The FD Services CSC is object oriented. FD Services will be implemented in C++ as a collection
of classes contained in a library that is linked into software applications wishing to utilize the FD
Services interface. The following page provides an object class diagram for FD Services.

CVT

Applications FD
Services

FD Values
via FD Services

Data
Distribution

FD Current
Value Data

FD Data

OLDB

FD Request
and Response

Applications Services 8 07/15/97 7:17 AM

F
unction D

esignator

-cvt: C
urrent V

alue T
able

-nam
e: char*

-nom
en: char*

-units: char*
-fdid: int

+
F

unctionD
esignator(const char* nam

e, const
char * nom

en, const char* units, in fdid, C
urrent-

valueT
able&

 cvt)
+

fdid(): int
+

nam
e(): const char*

+
nom

en(): const char*
+

units(): const char*

C
V

T
 Interface

+
setV

alue(int fdid, ...)
+

getV
alue(int fdid, ...)

O
L

D
B

 Interface

D
ata Fusion Info Interface

T
B

D

T
B

D

A
nalog M

easurem
ent

+
A

nalog M
easurem

ent(const char* nam
e, const

char* nom
en, const char* units, int fdid)

+
getV

alue(): float

D
iscrete M

easurem
ent

+
D

iscrete M
easurem

ent(const char* nam
e, const

char* nom
en, const char* units, int fdid)

+
getV

alue(): bool

D
igital Pattern M

easurem
ent

+
D

igital Pattern M
easurem

ent(const char* nam
e,

const char* nom
en, const char* units, int fdid)

+
getV

alue(): int

A
nalog S

tim
ulus

+
A

nalog Stim
ulus(const char* nam

e, const
char* nom

en, const char* units, int fdid)
+

setV
alue(const float)

D
iscrete S

tim
ulus

+
D

iscrete S
tim

ulus(const char* nam
e, const

char* nom
en, const char* units, int fdid)

+
setV

alue(const bool)

D
igital Pattern S

tim
ulus

+
D

igital Pattern S
tim

ulus(const char* nam
e,

const char* nom
en, const char* units, int fdid)

+
setV

alue(cont int)

A
M

_A
M

P

+
A

M
_A

M
P

(const char* nam
e,

const char* nom
en, const char* units, int fdid)

+
value(): A

M
P

D
M

_O
N

_O
FF

+
D

M
_O

N
_O

FF
()

+
value(): O

N
_O

FF

D
P

M
_B

IN

+
D

P
M

_B
IN

()
+

value(): B
IN

A
S

_PS
IA

+
A

S
_P

SIA
()

+
apply(const PS

IA
&

)

D
S

_O
N

_O
F

F

+
D

S
_O

N
_O

FF
()

+
set(const O

N
_O

F
F&

)

D
P

S_B
IN

+
D

P
S

_B
IN

()
+

issue(const B
IN

&
)

A
pplication

D
ata D

istribution

D
ata D

istribution Interface

F
D

 M
ulti-S

am
ple Q

ueue

E
ngineering U

nit

have

-char F
D

N
am

e[11]
-char N

om
enclature[35]

...+
F

D
N

am
e(): const char*

+
N

om
enclature(): const

char*
...

1+

F
D

 C
om

m
anding Interface

S
ends com

m
and through

1+

1+

T
im

e ordered
F

D
 data

D
elivers

R
equested

F
D

 values

R
equests M

ulti-Sam
ple

D
elivery

R
etrieves

F
D

 data
from

C
ontains

M
ulti-Sam

ple
data for

-F
D

N
am

e: char*
-fdid: int

creates

perform
s com

putations
w

ith

+
getnextvalue():

+
clearqueue(): bool

+
fdsubscribe(fdnam

e)
+

fdaddcallback(fdnam
e)

+
fdunsubscribe(fdnam

e)

+
issue(const B

IN
&

)
+

set(const O
N

_O
F

F&
)

+
apply(const PS

IA
&

)

D
_B

IN

+
issue(const B

IN
&

)
+

value(): B
IN

P
rovides

D
ata V

alue
H

ealth
T

im
e

P
rovides detailed

F
D

 Inform
ation

P
rovide

F
usion

A
lgorithm

and com
ponent

F
D

 nam
es

A
nalog

D
iscrete

D
igitalPatern

-value: int

-value:float

-value:bool

+
setV

alue(float)
+

getV
alue():float

+
setV

alue(bool)
+

getV
alue():bool

+
setV

alue(int)
+

getV
alue():int

A
_A

M
P

+
apply(const A

M
P&

)
+

value(): A
M

P

+
set(const O

N
_O

F
F&

)
+

value(): O
N

_O
FF

D
_O

N
_O

FF

Applications Services 9 07/15/97 7:17 AM

2.3.1 FD Services Detailed Data Flow

This diagram provides a pictorial representation of the data flow between applications, Data
Distribution, Data Health, Data Fusion, and FD Services objects.

Data
Distribution

DD(CVT)

OLDB

FD
CMD

CLCS
Application

2.0
FD Read and Write

Service

1.0
Process

Queued Multi-Sample
FDs FD Registration

for Multi-Sample
data

Multi-Sample
FD data

FD OLDB data

Current FD
- value
- health
- time

FD Write

FD
Write

FD Info

100ms
sample

of FD data changes

Current FD
- value
- health
- time

Detailed Data Flow for FD Services

2.3.2 FD Services External Interfaces

2.3.2.1 FD Services Message Formats

The following are the System Messages output by the FD Services CSC.

Message Number = specified system message number constant
Message Group = ASV
Severity = Error (possible levels: Warning, Error, Informational)

ASV FD Services unable to access CVT for Process Name #ARGUMENT1# reason
#ARGUMENT2# - #ARGUMENT3#

ARGUMENT1 =ASCII character string representing UNIX process name.
ARGUMENT2 =unsigned integer representing UNIX error number value.
ARGUMENT3 =ASCII character string that describes error condition

corresponding to ARGUMENT2 provided by UNIX.

Applications Services 10 07/15/97 7:17 AM

Help Information Content:

During application initialization the FD Services interface could not properly attach to Data
Distribution’s CVT shared memory area. Check to make sure that Data Distribution process is
running. Also, verify that the OLDB flat file is present (because Data Distribution needs this file to
generate the CVT).

Detailed Information:

ARGUMENT3 will provide a description of the reason for the error.

Message Number = specified system message number constant
Message Group = ASV
Severity = Error (possible levels: Warning, Error, Informational)

ASV FD Services Queued Multi-Sample FD interface initialization error for process name
#ARGUMENT1# reason #ARGUMENT2# - #ARGUMENT3#

ARGUMENT1 =ACSII character string representing UNIX process name.
ARGUMENT2 =unsigned integer representing UNIX error number value.
ARGUMENT3 =ASCII character string that describes error condition

corresponding to ARGUMENT2 provided by UNIX.

Help Information Content:

A request from an application to initialize a Queued Multi-Sample FD interface failed. One
possible cause of this error is that Data Distribution did not provide access to the queuing service;
please see the system message file for other errors that occurred during this period (particularly
from Data Distribution).

Detailed Information:

ARGUMENT3 will provide a description of the reason for the error. The termination of the Data
Distribution CVT server System Application would cause the interface closure error.

Message Number = specified system message number constant
Message Group = ASV
Severity = Error (possible levels: Warning, Error, Informational)

ASV FD Services Queued Multi-Sample FD interface error for process name #ARGUMENT1#
reason #ARGUMENT2# - #ARGUMENT3#

ARGUMENT1 =ASCII character string representing UNIX process name.
ARGUMENT2 =unsigned integer representing UNIX error number value.
ARGUMENT3 =ASCII character string that describes error condition

corresponding to ARGUMENT2 provided by UNIX.

Help Information Content:

During Queued Multi-Sample FD operations a UNIX system error was detected. The error could
be either a failed read interface error or a unexpected closure of interface error. This usually
would occur if Data Distribution terminated and restarted (a socket was changed). Please see the
system message log around that time period for any Data Distribution activity.

Detailed Information:

ARGUMENT3 will provide a description of the reason for the error. The termination of the Data
Distribution CVT server System Application would cause the interface closure error.

Applications Services 11 07/15/97 7:17 AM

Message Number = specified system message number constant
Message Group = ASV
Severity = Error (possible levels: Warning, Error, Informational)

ASV FD Services encountered an error reading from the OLDB file, #ARGUMENT1# reason
#ARGUMENT2# - #ARGUMENT3#

ARGUMENT1 =ASCII character string representing UNIX process name.
ARGUMENT2 =unsigned integer representing UNIX error number value.
ARGUMENT3 =ASCII character string that describes error condition

corresponding to ARGUMENT2 provided by UNIX.

Help Information Content:

FD Services was unable to access data in the OLDB table. The table does not exist in the path
specified or does not have adequate permissions. Verify that the OLDB flat file exists in the
proper directory, that read permission has been granted for that file, and that the TCID is correct.

Detailed Information:

ARGUMENT3 will provide a description of the reason for the error.

2.3.2.2 FD Services Display Formats

FD Services does not provide any displays.

2.3.2.3 FD Services Input Formats

There are no language-like interfaces provided by FD Services.

2.3.2.4 Recorded Data

FD Services does not record data nor initiate data recording.

2.3.2.5 FD Services Printer Formats

FD Services does not provide printed information.

2.3.2.6 Inter-process Communications

Inter-process communications takes place between FD Services and Data Distribution. The Data
Distribution CSC communicates FD data to the FD Services CSC through a UNIX shared memory
area called the Current Value Table (CVT).

The CVT consists of an index area that maps both FD names and FD-IDs to the data portion of
the CVT containing current FD value, the FD’s health bits, the time of the last data change, and
the time of the last health bit change.

Applications Services 12 07/15/97 7:17 AM

The CVT communication is further described in the CLCS Data Distribution to FD Services
Interface Definition Document.

2.3.2.7 FD Services External Interface Calls

The CLCS FD Services Interface Definition Document describes the data sent between the FD
Services CSC and CLCS applications via a calling mechanism.

2.3.2.8 FD Services Table Formats

FD Services utilizes one table internally that is provided by an outside source; this table is the
OLDB flat file provided by System Build CSCI. Table format is TBD. An ASCII table will be
provided by System Build for Redstone.

2.3.3 FD Services Test Plan

FD Services system-level tests may be run in either or both the IDE or SDE environments. These
tests are run on the basic HCI, CCP or DDP platforms. There are no specific hardware
configurations required. The minimal applications software configuration includes the Data
Distribution server and whatever programs and files are necessary to have the Data Distribution
server running. FD Services testing also requires a CLCS application or a CLCS like-application
test tool that exercises the FD read, FD write, OLDB read, and Queued Multi-Sample FD services.

The specific test cases that will be run include:
1. read FD value and verify type safe data manipulations
2. enjoin FD and verify that FD CMD is called.
3. read queued multi-sample FD data.
4. read OLDB provided data.

Applications Services 13 07/15/97 7:17 AM

3. Constraint Management Services (CMS)

3.1 Constraint Management Services Introduction

3.1.1 Constraint Management Services Overview

This CSC provides the services required for applications to communicate with the Constraint
Manager. Constraint Management Services provide applications a set of APIs for these functions:

1. Activating and Inhibiting constraints
2. Changing constraints
3. Reading constraint information

Applications

CM
Svcs

Application Services

EIMs SL
Displays

System ApplicationsUser Applications

System
Viewers

3.1.2 Constraint Management Services Operational Description

3.2 Constraint Management Services Specifications

3.2.1 Constraint Management Services Ground-rules

Ground-rules for the Redstone delivery follow:
• The Constraint Management CSC will not be available in the Redstone delivery.
• All CMS API interfaces to the Constraint Management CSC will be “stubbed” for Redstone.
• CMS APIs are lower priority than any other Redstone activities.

3.2.2 Constraint Management Services Common Functional Requirements

The following paragraphs define the FD Services Redstone requirements for these functions:

Activating and Inhibiting constraints
1. CMS shall provide an API to activate or inhibit constraint checking for an FD.
Changing constraints
2. CMS shall provide an API for changing the constraint limits associated with an analog FD.
3. CMS shall provide an API for changing the constraint state of a discrete FD.
4. CMS shall provide an API for changing the constraint condition for a digital pattern FD.
Reading constraint information
5. CMS shall provide an API for reading the constraint limits associated with an analog FD for an

application.
6. CMS shall provide an API for reading the constraint state associated with a discrete FD for an

application.

Applications Services 14 07/15/97 7:17 AM

7. CMS shall provide an API for reading the constraint conditions associated with a digital
pattern FD for an application.

8. CMS shall provide an API for reading the time an FD violated a constraint.
9. CMS shall provide an API for reading the time an FD returned to limits.

3.2.3 Constraint Management Services Performance Requirements

There are no Redstone performance requirements for Constraint Management Services.

3.2.4 Constraint Management Services Interfaces Data Flow Diagrams

Constraint
Management

Services

User
Displays

Constraint Request
/ Response

Applications Services 15 07/15/97 7:17 AM

4. Inter-application Communication (IAC)

4.1 Inter-Application Communication Introduction

4.1.1 Inter-Application Communication Overview

IAC is part of Systems Services. For IAC technical data, please see the Systems Services CSCI
documentation. Deleted IAC text from DP2 is not shown.

Application Services will perform the following performance analysis during Redstone:
1. Benchmark C/non-OO (Event Services) vs. C++/OO (Object Mgmt Services) performance:

• various message sizes (1, 10, 100, 1000, 10000 byte messages)
• intra-node and inter-node
• various traffic models (“bursty”, continuous)

2. Evaluate and prototype CORBA interface; re-run benchmarks.
3. Recommend messaging mechanism.

Applications Services 16 07/15/97 7:17 AM

5. User Display Services (UDS)

5.1 User Display Services Introduction

5.1.1 User Display Services Overview

User Display Service (UDS) provides the capability for applications to communicate with the
displays. UDS is a series of common routines provided to application programs giving them the
ability to update visual displays with current Function Designator (FD) values, health, and time.
UDS will also provide for displays the capability to get current FD information. Displaying generic
dialogues will also be done via UDS.

Applications

Application Services

User
Display
Services

FD
Services

User
Displays

System
Viewers

Command
Support

5.1.2 User Display Services Operational Description

User application displays will register with UDS all interested FD names. UDS will provide the
displays with the latest changed values, health, and time of the FD from the Current Value Table
(CVT) via FD Services. To stop updating the FD, user application displays will notify UDS to stop
retrieving the latest data.

UDS will give applications the capability to retrieve all of the latest FD information provided by FD
Services by right cursor clicking on a display.

UDS will provide an interface to Common Applications Support.

5.2 User Display Services Specifications

5.2.1 User Display Services Ground-rules

• UDS will interface to SL-GMS v.5.3 as the Redstone CLCS display development tool.

Applications Services 17 07/15/97 7:17 AM

•

• User application and System Viewers displays will use UDS to access current data from the
CVT and OLDB.

• UDS will NOT provide queued (multi-sample) nor historical FD data.

• UDS will only provide a way to access system menus; not the system menus themselves.

• UDS will only provide a way to access Common Application Support routines; not provide the
routines themselves.

• UDS will be object oriented, written in C++.

• UDS performance is based upon data update rates to the local CVT.

5.2.2 User Display Services Functional Requirements

1. UDS shall provide a mechanism allowing an FD-related widget on an SL-GMS display to
access the current FD data from the CVT / OLDB) without callback programming.
2. UDS shall provide an API allowing System Viewers or user application displays access FD
related information from the CVT/OLDB.
7

 3. UDS shall provide a way for applications to access common library dialog functions to:

A. Provide a two step modeless pop up window.
a. Provide a CANCEL button.
b. Provide an EXECUTE button.

B. Provide an input text modeless pop up window for analog FD input.
a. Provide a CANCEL button.
b. Provide an SEND button.

C. Provide a text display modeless pop up window for command formatting errors.
a. Provide an OK button.

4. UDS shall provide an API to send requested FD related information from user applications
displays to System Viewers (right cursor click).
5. UDS shall provide API’s to update the necessary SL-GMS representation of FD’s with the
current data.
6. UDS shall provide an API to stop updating the SL-GMS display of a FD with the current data.

5.2.3 User Display Services Performance Requirements

1. UDS will provide access to updates for the user application display once the latest value is
stored in the CVT (UDS performance is based upon data update rates to the local CVT).

2. UDS will provide FD information to System Viewers within one second.

7 There is still a system level issue regarding the passing of display attributes.

Applications Services 18 07/15/97 7:17 AM

5.2.4 User Display Services Interfaces Data Flow Diagrams

User
Displays

Command
Support

User
Display
Services

FD
Services

System
Viewers

Common
Application

Support

FD Request
and Responses

FD Request
and Responses

Dialog Request
and Responses

Dialog Request

FD Responses

User Display Services Data Flow Diagram

5.3 User Display Services Design Specification

5.3.1 User Display Services Detailed Data Flow

Applications Services 19 07/15/97 7:17 AM

FD
Services

FD
CVT/OLDB

Info

FD Objects
-Analog -Discrete
-Digital -Time
-String

Current FD
-Value
-Time
-Health

User
Displays

Common
Application

Support

User Display
Services

FD Viewer
Info

System
Viewers Dialog

request

Command
Support

Dialog
Request

Dialog
Response

FD Objects
-Analog -Discrete
-Digital -Time
-String

Detailed Data Flow Diagrams

User Displays will register a list of analog, discrete, and digital FD objects with UDS. UDS will
store a reference pointer to the FD objects and update the data, health, and time for each change
from FD Services. User Displays can also request UDS to call System Viewers and pass them
the FD information from the CVT and OLDB. System Viewers will also be able to send a list of
analog, discrete, and digital FD objects back to UDS for updating the CVT and OLDB information
necessary for their displays.

Command Support will be able to request dialog boxes for more information. Command Support
will go through UDS to get two-step, input, and message dialogs for their displays. The dialogs
will be stored and access from Common Application Support library.

Applications Services 20 07/15/97 7:17 AM

FunctionDesignator
cvt : CurrentValueTable
name : char *
nome : char *
units : char *
fdid : int

FunctionDesignator(const char *
name,const char *nome, const char*
units,int fdid,CurrentValueTable& cvt)
fdid() : int
name() : const char *
nomen() : const char *
units() : const char *

Provides FD Data

int NumFDs

UDS_DataHandler

UDS_DataHandler()
~UDS_DataHandler()
UDS_UpdateFDTimeHealthValue(void)
UDS_CallSysViewers(int ScreenLocX,

int ScreenLocY,
UDS_FDData *fds,
int numFDs)

UDS_AddFD(FunctionDesignator *fd)
UDS_RemoveFD(FunctionDesignator *fd)

UDS_FDDataList
FDType : int
FD : FunctionDesignator *
Next : UDS_FDDataList *

UDS_FDData()
~UDS_FDData()
UDS_GetFDInformation()
UDS_AddFD(FunctionDesignator *fd)
UDS_RemoveFD(FunctionDesignator *fd)

S
tores D

ata

User
Displays

Creates

System
Viewers

Calls

1+

Creates

FD Update Class Diagram

Applications Services 21 07/15/97 7:17 AM

UDSDialog

UDSDialog()
~UDSDialog()

UDSInput

UDSInput()
~UDSInput()

Text : String
Input : String
Send : Button
Cancel : Button

UDSTwoStep

UDSTwoStep()
~UDSTwoStep()

Text : String
Execute : Button
Cancel : Button

UDSMessage

UDSMessage()
~UDSMessage()

Text : String
Ok : Button

FD Dialog Class Diagram

Applications Services 22 07/15/97 7:17 AM

 Initial FD List

 Destroy FD List

 Update FDs
 Get FD to Update

[Not Empty
list]

Call FD
Services

[FD Has Not Changed]

Load Next
FD

[FD Has
Changed] Update FD Display

Is
Open

 [Get Next
FD to

Update]

[No More FDs]
 Insert FDs

[Next FD]

Pass FD by Reference Add FD to List

[No More FDs]
 Delete FDs

[Next FD]

Pass FD by Reference Remove FD from List

FD Update State Diagram

5.3.2 User Display Services External Interfaces

5.3.2.1 User Display Services Message Formats

User Display Services outputs the following system messages:

Message Number = specified system message number constant.
Message Group = ASV
Severity = Informational

ASV UD Services initialized Process #ARGUMENT1# successfully.

ARGUMENT1 = ASCII character string representing UNIX process name.

Help Information Content
ASV UD Services initialized successfully. No errors were encountered when UDS loaded
at run-time and the Data Handler was created.

Detailed Information

Applications Services 23 07/15/97 7:17 AM

N/A

Message Number = specified system message number constant.
Message Group = ASV
Severity = Error

ASV UD Services failed to initialize Process #ARGUMENT1# reason #ARGUMENT2# -
#ARGUMENT3#

ARGUMENT1 =ASCII character string representing UNIX process name.
ARGUMENT2 =unsigned integer representing UNIX error number value.
ARGUMENT3 =ASCII character string that describes error condition

corresponding to ARGUMENT2 provided by UNIX.

Help Information Content.
ASV UD Services could not initialize the FD Services routines needed to update the FDs
specified.

Detailed Information
ARGUMENT3 will provide a description of the reason for the error.

Message Number = specified system message number constant.
Message Group = ASV
Severity = Warning

ASV UD Services Display Data Handler was initialized with zero FDs.

Help Information Content
ASV UD Services Data Handler was created without any specified FD objects. System
Viewers could create a Data Handler without any FD objects specified while waiting for
user input of the FDs.

Detailed Information
N/A

Message Number = specified system message number constant.
Message Group = ASV
Severity = Error

ASV UD Services encountered a Common Application Support library error.

Help Information Content
Any information available from the Common Application Support library will be passed
along to system messages.

Detailed Information
N/A

Message Number = specified system message number constant.
Message Group = ASV
Severity = Error

ASV UD Services failed to initialize #ARGUMENT1# Dialog.

#ARGUMENT1# = Type of Dialog that was initialized.

Help Information Content

Applications Services 24 07/15/97 7:17 AM

ASV UD Services will send a message when a dialog error has occurred. The type of
dialog that was suppose to be sent will also be described.

Detailed Information
N/A

Message Number = specified system message number constant.
Message Group = ASV
Severity = Error

ASV UD Services encountered a System Viewer error.

Help Information Content
ASV UD Services will send a message when a System Viewer error has occurred. The
type of error encountered will be pass along to system messages.

Detailed Information
N/A

5.3.2.2 UDS Display Formats

Not applicable. UDS does not provide any displays.

5.3.2.3 UD Services Input Formats

Not applicable. There are no language-like interfaces provided by UDS.

5.3.2.4 Recorded Data

UDS does not record data nor initiate data recording.

5.3.2.5 UDS Printer Formats

UDS does not provide printed information.

5.3.2.6 Inter-process Communications

Not applicable.

5.3.2.7 UDS External Interface Calls

The CLCS UDS Interface Description Document describes the data sent between the UDS CSC
and CLCS applications via a calling mechanism. The CLCS FD Services Interface Description
Document describes the data sent between UDS and FD Services.

Applications Services 25 07/15/97 7:17 AM

5.3.2.8 UDS Table Formats

UDS does not utilize any tables internally that are provided from an outside source.

5.3.3 UDS Test Plan

Gateway

Logical HCI

User
Displays

System
Viewers

FD
Service

s
User

Display
Service

sSystem
Messag

e
Service

s

CMD
Support

CVT
OLDB
TCID

Logical DDP

Data
Distribution

System
Messag

e
Writer

Monitor

CMD

DDVT

Work Station

Keyboard Mouse

UDS Minimum Test Configuration

UDS system-level tests may be run in either or both the IDE or SDE environments. These tests
are run on the basic HCI platform. There are no specific hardware configurations required. The
minimal applications software configuration includes an environment in which FD Services can
provide “moving” data to UDS, and a CLCS application or a CLCS like-application test tool to
request and view data.

The specific test cases that will be run include:

1. FD updates: Ensure that display widgets are updating with the correct values.
2. System Viewers: Ensure that right clicks enable the proper floating menu(s).
3. Dialogs: Ensure that all Common Applications Support dialogs present are available.

